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1 Introduction

1.1 Motivations

Recently, generalized O’Raifeartaigh models — weakly-coupled Wess-Zumino models that

break SUSY through tree-level F -term vevs — have received renewed attention [1–19]. This

is due to the realization that, despite appearances, generalized O’Raifeartaigh models can

serve as the low-energy description of dynamical SUSY breaking (DSB) in strongly-coupled

gauge theories, as happens in [20] (see also [21, 22]).

A common feature of generalized O’Raifeartaigh models is that they typically come

equipped with a U(1)R-symmetry. This is no surprise, since it follows from the general

result of Nelson and Seiberg [23], which says that all generic SUSY-breaking models must

have an R-symmetry. However, it leads to some tension with basic phenomenology, in that

the R-symmetry must be broken in the vacuum in order to allow for (Majorana) gaugino

masses in the MSSM. Since the simplest O’Raifeartaigh models (including the original

one [24]) do not break R-symmetry spontaneously in the vacuum, it is an interesting

challenge to come up with generalized O’Raifeartaigh models that do.
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By now, many O’Raifeartaigh models with spontaneous R-symmetry breaking have

been constructed. All these models have relied on the same basic approach and made

use of the following general property: in every O’Raifeartaigh model, there always exist

tree-level flat directions emanating from any local SUSY-breaking vacuum. (This result

was apparently known to experts in the past, but the first place we are aware of it being

clearly stated and proven is [1].) Such tree-level flat directions are known as pseudomoduli,

because they generally receive an effective potential from radiative corrections. Since they

are typically charged under the R-symmetry, one can achieve spontaneous R-breaking by

inducing vevs for the pseudomoduli via the effective potential. Using this approach, it

was shown how to construct models that break R-symmetry at one-loop via the Coleman-

Weinberg potential in [3]; the necessary condition was that there had to be a field with

R-charge R 6= 0, 2. Other models were also recently constructed [11, 15, 18] where a

pseudomodulus is pushed away from the origin at two or higher loops.

One of our goals in this paper is to investigate an alternative approach to R-symmetry

breaking which has not received much attention to date: tree-level R-symmetry breaking.

By this we mean models where R-symmetry is broken independently of the details of the

effective potential. Clearly, in order for this to happen, R-charged fields which are not

pseudomoduli must obtain vevs at tree-level, so that R-symmetry is broken on the entire

pseudomoduli space.

Along the way we will derive many useful results on Wess-Zumino models. We will

argue that these results are relevant to models of dynamical SUSY breaking, and in par-

ticular we explain a curious feature of direct gauge mediation that has so far been noticed

in many examples: a tendency for gaugino masses to come out anomalously small, even

if there is no symmetry protecting the mass term. Equipped with these understandings,

we will suggest some new approaches for dynamical SUSY breaking which could avoid the

problem of too-light gauginos.

Now we turn to a more detailed summary of our main results.

1.2 Summary and detailed outline

Our investigations will be mainly in context of renormalizable Wess-Zumino mod-

els, i.e. theories of chiral superfields φi with canonical Kähler potential and a

general superpotential1

W = fiφi +
1

2
mijφiφj +

1

6
λijkφiφjφk . (1.1)

We will refer to models of this form that break SUSY as generalized O’Raifeartaigh

models, or O’R models for short. In section 2 we set the stage by reviewing some general

properties of Wess-Zumino models. First we derive a general result: a massless fermion in

Wess-Zumino models implies a massless complex boson in the same chiral multiplet, even if

SUSY is broken. Then we show how this lemma leads to a new derivation of the existence

of pseudomoduli in O’R models:

φi = φ
(0)
i + zFi , (1.2)

1Although we assume renormalizability for simplicity, in fact many of our results also apply to non-

renormalizable superpotentials.
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where z ∈ C is any complex number and Fi is the F -term expectation value of the

field φi. The virtue of this derivation is that it makes clear the connection with the

massless Goldstino.

The existence of this universal flat direction implies that there is a convenient basis in

which the flat direction is parameterized by some chiral superfield X (which also contains

the Goldstino), and the directions orthogonal to it are parameterized by fields ϕi. In this

basis the superpotential looks like [1]

W = fX +
1

2
(λabX + mab)ϕaϕb +

1

6
λabcϕaϕbϕc . (1.3)

with the SUSY-breaking pseudomoduli space occuring at ϕ = 0 and X arbitrary. We will

refer to (1.3) as the “canonical form” of O’R models, since every O’R model can be brought

to this form.

In addition, we argue that generic O’R models must take a certain form:

W = Xifi(ϕa) + g(ϕa) . (1.4)

where the fields Xi have F -term expectation values while the ϕa fields do not. This form

is useful since it can explicitly exhibit all the symmetries of the model. This is in contrast

to the canonical form (1.3), which can hide the symmetries of the problem, due to the set

of shifts and unitary rotations that are necessary to transform a given model into (1.3).

In section 3, we examine more precisely what it means for a Wess-Zumino model

to break R-symmetry at tree-level. An important point that we will emphasize is that

tree-level R-symmetry breaking requires genuine tree-level SUSY breaking — i.e. the pseu-

domoduli space must be locally stable (i.e. tachyon-free) everywhere. Otherwise one has to

compute the effective potential in order to decide whether the vacuum even exists or not.

While there are many well-known examples of tree-level SUSY breaking models —

including the original O’Raifeartaigh model [24], the “rank-condition” model that arises

as the low-energy limit of massive, free-magnetic SQCD [20], and the ITIY model [21, 22]

— tree-level R symmetry breaking is relatively new. The first example of tree-level R-

symmetry breaking was recently constructed in [12] and expanded upon in [17]. One of

our goals in this paper is to generalize these constructions and find new examples. We will

provide a recipe for generating a large class of such models. The idea behind the recipe is

to first find a model of the form (1.4) with g = 0, which respects a U(1)R ×U(1) symmetry

and breaks SUSY and the U(1) symmetry at tree-level. Then extend the model to include

additional fields ϕ̃n with some superpotential

δW = g(ϕa, ϕ̃n) , (1.5)

which does not affect the tree-level SUSY-breaking and leaves invariant only some nontrivial

U(1)′R ⊂ U(1) × U(1)R. Now the spontaneous U(1) breaking in the g = 0 model becomes

spontaneous U(1)′R breaking, and we have a theory of tree-level R-symmetry breaking.

This framework characterizes the models of [12, 17], where the g = 0 model is essentially

the original O’Raifeartaigh model, and g consists of various terms cubic in the fields. It
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also leads to qualitatively new models of tree-level SUSY and R-symmetry breaking. In

particular, we exhibit a model in which there are no R = 2 fields in the superpotential

(and therefore no linear terms).

Finally, in section 4 we deduce a general property of tree-level SUSY-breaking models:

the supersymmetric mass matrix of the fluctuations around the pseudomoduli space always

has constant determinant, independent of one’s location on the pseudomoduli space. In

the canonical form (1.3), these fluctuations are described by the fields ϕa, and their mass

matrix by λX + m. Thus, we show that

det(λX + m) = det m . (1.6)

As we will explain, this property has an immediate application to gauge mediation

model building. In many calculable models of direct gauge mediation (see e.g. [25–29] for

recent examples, as well as the much earlier model of [30]), the hidden sector turns out

to break SUSY at tree-level. Since the formula for the gaugino mass at leading order in

SUSY breaking is

meg ∼ f † ∂

∂X
log det(λX + m) , (1.7)

we see immediately from (1.6) that in all these models gaugino masses vanish at the leading

order in SUSY breaking. This curious fact was noticed in the context of specific models,

and here we see it is a general property of tree-level SUSY-breaking.

Since tree-level SUSY breaking is necessary for tree-level R-symmetry breaking, this

also implies that models of tree-level R-symmetry breaking cannot be useful for direct

gauge mediation. (That is, in spite of the fact R-symmetry is spontaneously broken,

gaugino masses do not arise at the leading order.) Of course, they can still be useful as

SUSY-breaking hidden sectors in a modular model of gauge mediation with a separate

messenger sector.

A promising way of generating large enough gaugino masses is to consider theories

of DSB where the SUSY-breaking vacuum is not the ground state even in the low-energy

renormalizable approximation. Indeed, then there is no reason to expect the pseudomoduli

space to be tachyon free everywhere, and then there would be no obstruction to obtain-

ing satisfactorily large gaugino masses. This strategy is different from the conventional

approach to DSB. For example, in the meta-stable DSB model of [20], the renormalizable

“rank-condition” model breaks SUSY at tree-level, and SUSY is only restored “dynami-

cally” by non-perturbative effects. In light of these observations, there is no compelling

reason to discard models that do not break SUSY in the low energy approximation, and

following such guidelines might lead to qualitatively new models of meta-stable dynamical

SUSY breaking.

2 Basics of SUSY Breaking in Wess-Zumino models

2.1 Setup, and a lemma

In this section we will discuss some general features of generalized O’R models. While this

will consist mostly of a review of known facts, some new insights will also emerge in the

course of our discussion.
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The starting point of our investigation is a general Wess-Zumino model with chiral

superfields φi having a canonical Kähler potential and a renormalizable superpotential

W = fiφi +
1

2
mijφiφj +

1

6
λijkφiφjφk , (2.1)

The tree-level scalar potential is (subscripts on W indicate derivatives)

V =
∑

i

|Wi|
2 . (2.2)

We suppose that V has a SUSY-breaking local minimum at some φi = φ
(0)
i . This imposes

a number of constraints on the theory:

1. Obviously, SUSY-breaking requires at least one Wi 6= 0. (All derivatives of W are

evaluated at φ
(0)
i unless otherwise noted.)

2. V has extremum provided that

WijW
∗
j = 0 , (2.3)

Given that (MF )ij ≡ Wij is also the fermion mass matrix, (2.3) is nothing but the

tree-level manifestation of the well-known fact that when SUSY is broken, there is a

massless Goldstino, and it corresponds to the direction selected out by the nonzero

F -terms.

3. The quadratic fluctuations around the extremum are described by the tree-level boson

mass-squared matrix,

M2
B =

(
M∗

FMF F∗

F MFM
∗
F

)
(2.4)

where MF was defined above, and

Fij ≡ W ∗
k Wijk (2.5)

is the effect of SUSY-breaking. In a consistent vacuum, M2
B must be positive semi-

definite (i.e. there cannot be any tachyons).

From these constraints, we will deduce a number of interesting properties of generalized

O’R models. We start by proving the following lemma, which will be useful imminently as

well as later in the paper: in any SUSY-breaking vacuum of a generalized O’R model, if

there is a massless fermion at tree-level, then its scalar superpartner must also be massless

at tree-level.

To prove the lemma, we use the fact that if M is a positive semi-definite hermitian

matrix, then w†Mw = 0 if and only if Mw = 0. (This fact is trivial to prove once one

recalls that M can always be written as A†A for some matrix A.) Now suppose that MF

has a zero eigenvector v, and consider the norm of the vector (v, v∗) w.r.t. M2
B:

(
v

v∗

)†(
M∗

FMF F∗

F MFM
∗
F

)(
v

v∗

)
= vTFv + c.c. (2.6)
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For positive semi-definite M2
B , this must vanish, since otherwise we could make it

negative by rotating the phase of v. Hence (v, v∗) must be a null eigenvector of M2
B .

Therefore there is a massless boson and this completes the proof of the lemma.2

Note that one immediate corollary of the lemma is that

Fv = 0 (2.7)

i.e. MF and F must both have the same null eigenvector. Another comment is that, from

the proof of the lemma, it is clear that the assumption of renormalizable superpotential

was unnecessary. So the lemma applies equally well to general polynomial W .

2.2 Existence of pseudomoduli spaces

Since the Goldstino is always massless, its superpartner must also always be massless in

the vacuum of any SUSY-breaking WZ model, according to the above lemma. Applying

the corollary (2.7) to v = W ∗
i leads to our next general condition on the superpotential:

WijkW
∗
i W ∗

j = 0 . (2.8)

In fact, for a renormalizable superpotential, the superpartner of the Goldstino is not

only massless — it can be extended to an entire pseudoflat direction. Using (2.3), (2.8),

one immediately finds that

φi = φ
(0)
i + zW ∗

i , (2.9)

leaves the tree-level potential unchanged for any z ∈ C. The existence of a pseudomoduli

space in any SUSY-breaking renormalizable WZ model is a central result in the study of

these models. Our derivation of this result is similar to the original presentation in [1],

although the use of the lemma above is new.

Note that in (2.9), the F -terms Wi are evaluated at the stationary point φ
(0)
i , even

though z is arbitrary. In fact, it does not matter where along the pseudomoduli space the

F -terms are evaluated — under a shift in z, the F -terms do not change:

δWi = Wij(zW ∗
j ) +

1

2
Wijk(zW ∗

j )(zW ∗
k ) = 0 , (2.10)

where we have used (2.3), (2.8). Thus the F -terms are constant along the pseudomoduli

direction (2.9).3 It follows then that we can perform a unitary transformation independent

of our location on the pseudomoduli space, such that only one field X has an F -term vev.

Shifting the other fields (which we denote by ϕa) around their vevs leads to what we will

refer to as the canonical form of SUSY-breaking WZ models:4

W = X(f +
1

2
λabϕaϕb) +

1

2
mabϕaϕb +

1

6
λabcϕaϕbϕc . (2.11)

2We note that the methods used here are reminiscent of those used by [31] to establish the well-known

(but different) result that there must always be a scalar lighter than the up quark, if SUSY is broken and

mediated at tree-level. We thank N. Arkani-Hamed for bringing this to our attention.
3In the appendix, we argue for a much stronger result: the F -terms are constant along the entire

pseudomoduli space, even if it contains other directions in addition to (2.9).
4Under slightly more refined conditions on the scalar potential, a similar canonical form also exists in

the case of a non-renormalizable superpotential [1]. The same comment holds for the generic form of SUSY

breaking (2.12), which we discuss in the next subsection.
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In this basis, (2.9) corresponds to ϕ = 0 and X ∈ C arbitrary. We would like to stress

that the set of transformations that bring the superpotential into the canonical form —

and hence the canonical form itself — need not respect the symmetries of the problem, if

there are any.

2.3 Generic form of generalized O’R models

Finally, let us use the preceding discussion to deduce one more elementary result in the

theory of generalized O’R models. The idea is that for a generic model, i.e. absent any

unnatural cancellations, the requirements (2.3), (2.8) imply that there cannot be any term

in the superpotential coupling together two fields both of which get F -terms. Given a

certain SUSY breaking classical solution, let us split up the fields into Xi which have

nonzero F -term vevs and ϕa which do not. Then every Xi must appear linearly, i.e.

W = Xifi(ϕa) + g(ϕa) . (2.12)

We will refer to this as the generic form of the generalized O’R model. This form is useful,

since it can exhibit explicitly all the symmetries of the problem, in contrast with the canon-

ical form (2.11). However, not every O’R model must take this form, only every generic

model. To illustrate this point, take for instance any model in the canonical form (2.11)

and perform a unitary rotation among all the fields (X,ϕ). Then there will typically be

many fields with F -term vevs, and many couplings between them. However, these cou-

plings will not all be independent — they will be related to the couplings of the original

model via the unitary transformation. So the model will not be generic.

It is interesting that the generic form (2.12) essentially corresponds to the class of O’R

models studied in [4], with an addition of the term g(ϕ) in the superpotential. In [4], the

g = 0 models were analyzed as a particularly simple class of O’R models. Here, we see

that with the inclusion of g 6= 0, they become the most general possible class of (generic)

O’R models.

3 Tree-Level SUSY and R-symmetry breaking

3.1 Definitions

In the previous section, we reviewed the existence of pseudomoduli spaces in generalized

O’R models (and mentioned some other results that emerged in the course of the discus-

sion). To determine the vacuum of the theory, it is necessary to compute and minimize

the radiatively-induced effective potential on the pseudomoduli space. At one-loop, this is

given by the Coleman-Weinberg potential [32]

V =
1

64π2
STrM4 log

M2

Λ2
. (3.1)

One should keep in mind that the pseudomoduli space need not be a local minimum

everywhere — it could be locally stable in some places and tachyonic in others. The model

of [3] and many of the EOGM models studied in [9] have this property. Thus it is important

– 7 –
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to check that the minimum of the effective potential is situated at a stable place on the

pseudomoduli space.

Since the details of the SUSY-breaking vacuum depend on one (or higher) loop cor-

rections, it is valid to wonder what it even means for SUSY or R-symmetry to be broken

at tree-level. We will say that a model breaks SUSY at tree-level if it has a pseudomoduli

space that satisfies the following two conditions:

1. The pseudomoduli space is locally stable everywhere.

2. The radiative potential on the pseudomoduli space rises at infinity everywhere.

In addition, we will say that a model breaks R-symmetry at tree-level if

3. The pseudomoduli space breaks R-symmetry everywhere.

When these conditions are satisfied, it is not necessary to compute the effective poten-

tial in detail to be guaranteed that SUSY or R-symmetry must be broken in the vacuum.

The second condition does require some knowledge of the radiative potential, but only at

large fields, where it can generally be computed using wavefunction renormalization, using

e.g. the techniques developed in [15]. Moreover, if the only pseudomodulus is the X field,

then the second condition is automatically satisfied. The potential for X always occurs at

one loop (unless X is a completely decoupled Polonyi field), and it always rises like log X

times a positive coefficient which is essentially the anomalous dimension of X [33].

Note that the pseudomoduli space in question need not be the global minimum of

the potential; the theory could have multiple disconnected pseudomoduli spaces, or SUSY

vacua, or runaway directions. All that is necessary for the definition is that the theory

have at least one pseudomoduli space satisfying the conditions above.

3.2 A general recipe for tree-level SUSY and R-symmetry breaking

In this subsection, we will provide a general recipe for how to construct models of tree-level

SUSY and R-symmetry breaking. While the recipe does not necessarily lead to the most

general possible model, we believe it encompasses a wide variety of cases. In particular, it

includes the models constructed in [12, 17], as well as a new class of models that we will

describe in the next subsection. (The reader who is only interested in the applications of

tree-level SUSY and R-breaking to model building is advised to skip ahead to section 4,

which does not depend on the results presented in the remainder of this section.)

Recall the generic form of O’R models (2.12), which we repeat here for convenience:

W = Xifi(ϕa) + g(ϕa) . (3.2)

The scalar potential of this model takes the form

V =
∑

i

|fi(ϕ)|2 +
∑

a

|Xi∂afi(ϕ) + ∂ag(ϕ)|2 . (3.3)

Our recipe stems from the following observation: if g = 0, then the model cannot break

R-symmetry at tree-level. To see this, notice that when g = 0, the theory automatically

– 8 –
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has an R-symmetry under which R(Xi) = 2 and R(ϕa) = 0. Moreover, the condition that

the ϕ F -terms vanish implies that Xi must be a zero eigenvector of the matrix Mai ≡ ∂afi.

But then rescaling Xi by any amount leaves the vacuum energy unchanged, so the origin

Xi = 0 must be a connected part of any pseudomoduli space. Since the Xi are the only

fields that carry R-charge, this implies that the theory can never break R-symmetry at

tree-level.5 Thus for tree-level R-symmetry breaking, g 6= 0 is essential.

Now let us formulate our recipe for constructing models of tree-level SUSY and R

breaking. Suppose we have a model with g = 0 that:

1. Breaks SUSY at tree-level. (This is easier than it may sound: any g = 0 model that

breaks SUSY is guaranteed to have a stable pseudomoduli space.)

2. Respects an ordinary U(1) symmetry in addition to the R-symmetry described above.

3. Stabilizes the ϕ fields at a nonzero value, such that the extra U(1) is sponta-

neously broken.

Then to obtain a model of tree-level R breaking, we can attempt to add fields ϕ̃ and

a function g(ϕ, ϕ̃) in the superpotential, such that the U(1)R and U(1) symmetries are

broken explicitly, but a nontrivial combination of the two (call it U(1)′R) is left intact.

Now, as long as the ϕ̃ F -terms can all be set to zero by solving for ϕ̃, then the analysis

of the model proceeds as for g = 0 (in particular, SUSY is still broken at tree-level). The

only difference is that now the R-symmetry is spontaneously broken by the fact that ϕ 6= 0

in the vacuum.

Roughly speaking, we can think of this class of tree-level R-symmetry breaking models

as ordinary O’R models (g = 0) dressed up with extra couplings (g 6= 0) whose purpose is

to fix the R-charges of all the fields to “exotic” values.

To illustrate this, let us turn the recent work of [12, 17]. There models of tree-level

R-symmetry breaking were constructed which were essentially of the form

W = X0(f + λϕ1ϕ2) + m(X1ϕ1 + X2ϕ2) + (cubic terms) . (3.4)

Aside from the cubic terms, the superpotential is basically that of the original O’R model

(which breaks SUSY at tree-level), augmented with a U(1) symmetry under which ϕ1,

X2 have charge +1 and ϕ2, X1 have charge −1. When λf > m2, the SUSY-breaking

pseudomoduli space has ϕi 6= 0, breaking the U(1) [4]. So all the conditions above are

satisfied, and as long as the cubic terms are chosen correctly (with the inclusion of additional

fields), R-symmetry can be broken at tree-level. In this way, we see that models of [12, 17]

fit into our general framework.

3.3 Example of an O’R model with no R = 2 fields

To further illustrate the utility of our general recipe, we will use it to construct a tree-level

SUSY and R-symmetry breaking model in which there is no field with R-charge R = 2 (and

5Although it does not directly concern us here, it is amusing to note that g = 0 models cannot break

the R-symmetry at one-loop either, since all the fields have R = 0 or R = 2 [3].
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hence no linear term in the superpotential). Such theories are interesting since if SUSY is

broken then R-symmetry is broken as well by the F -terms (none of which are neutral) [6].

The model we construct here is the first explicit example of its kind and should be taken

as an existence proof.

Consider the following g = 0 model:

W = m1X1ϕ1 + m2X2ϕ2 + λ1X3ϕ
2
1 + λ2X1ϕ

2
2 + λ3X4ϕ

2
3 + λ4X2ϕ1ϕ3 . (3.5)

This is the most general superpotential consistent with an R-symmetry with charges

R(X) = 2 and R(ϕ) = 0, and an extra U(1) symmetry with charges

q(X1) = −2, q(X2) = −1, q(X3) = −4, q(X4) = 2

q(ϕ1) = 2, q(ϕ2) = 1, q(ϕ3) = −1 (3.6)

The tree-level potential for this model is:

V = |m1ϕ1 + λ2ϕ
2
2|

2 + |m2ϕ2 + λ4ϕ1ϕ3|
2 + |λ1ϕ

2
1|

2 + |λ3ϕ
2
3|

2 (3.7)

+|m1X1 + 2λ1X3ϕ1 + λ4X2ϕ3|
2 + |m2X2 + 2λ2X1ϕ2|

2 + |2λ3X4ϕ3 + λ4X2ϕ1|
2 .

Since there is no R = 2 field, there is a SUSY moduli space: ϕi = X1 = X2 = 0 with

arbitrary X3 and X4. We are interested if there is also a SUSY-breaking local pseudo-

moduli space with ϕi 6= 0.

To answer this question, clearly it suffices to set the ϕ F -terms (the second line

of (3.7)) to zero by an appropriate choice of X1, X2 and X4. This leaves a one-dimensional

pseudo-moduli space parameterized by arbitrary X3. So we focus our attention on the

reduced potential

V = |m1ϕ1 + λ2ϕ
2
2|

2 + |m2ϕ2 + λ4ϕ1ϕ3|
2 + |λ1ϕ

2
1|

2 + |λ3ϕ
2
3|

2 . (3.8)

The reduced potential has an extremum at (for simplicity we will take all the couplings

to be real and positive)

ϕ2 = −
λ2

4x(2x2 + 1)

λ3m2
ϕ2

1

ϕ3 =
λ4x

λ3
ϕ1

ϕ1 =
2m2

2

λ2m1

x2(α2 − x4)

(2x2 + 1)(x4 − 2x6 − 2α2)
(3.9)

with α = λ1λ3/λ
2
4 and x a real solution of the equation

β(x4 − 2x6 − 2α2)3/2 =
4(α2 − x4)2x2

2x2 + 1
, (3.10)

with β = m2
1λ2λ3/λ

2
4m

2
2.

The equation for x has real solutions provided that α is sufficiently small. For instance,

for α = 0.1 and β = 5, the equation is solved for x = ±0.43 and x = ±0.59. In this case,
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the latter vacua have a tachyonic direction, while the former vacua are local minima — all

the fluctuations around these vacua are non-tachyonic. Thus the former vacua give rise to

the stable, tree-level SUSY-breaking pseudomoduli space that we are after.

Since ϕ 6= 0 in the pseudomoduli space, the extra U(1) (3.6) is broken in the vacuum.

The theory does not break R-symmetry at tree-level, since at the origin of pseudomoduli

space the R-symmetry is unbroken. But if we now add the right fields ϕ̃ and the right

function g(ϕ, ϕ̃), we can turn the U(1) breaking into R breaking, as described in the

previous subsection.

There are many possible ways to do this; one way is to introduce new fields ϕ̃1, ϕ̃2 and

add to (3.5) the superpotential

g(ϕ, ϕ̃) = m3ϕ̃
2
1 + m4ϕ̃2ϕ3 + λ5ϕ̃1ϕ̃

2
2 . (3.11)

These terms break the U(1)R and U(1) symmetries but leave intact a nontrivial linear

combination

R(X1) = 5, R(X2) =
7

2
, R(X3) = 8, R(X4) = −1

R(ϕ1) = −3, R(ϕ2) = −
3

2
, R(ϕ3) =

3

2
, R(ϕ̃1) = 1, R(ϕ̃2) =

1

2
(3.12)

It is important that the most general possible superpotential allowed by this R-

symmetry is (3.5) plus (3.11). The new F -terms Feϕ1
and Feϕ2

can be set to zero by

choice of ϕ̃1 and ϕ̃2. So the analysis of the previous model carries over, except that now

the R-symmetry (3.12) is spontaneously broken at tree-level.

In the pseudomoduli space of this model, there are three massless modes in the tree-

level spectrum. Two modes obviously correspond to the pseudomodulus direction, while

the third corresponds to the Goldstone boson of the broken R-symmetry. This should

be contrasted with models where the pseudomoduli space contains an R-symmetric point.

In such models, the R-Goldstone is sometimes a part of the canonical pseudomodulus

space (2.9), and there are only two massless modes, since the only source of R-breaking

comes from the pseudomodulus itself. This difference between tree-level and non-tree-

level R-breaking models is clearly a general feature, and we discuss it in more detail in

the appendix.

4 Application to model building

Our interest in tree-level SUSY and R-symmetry breaking models stems from their potential

usefulness in supersymmetric model building and phenomenology, especially models of

gauge mediation [34–39]. In this section, we will deduce a general feature of tree-level

SUSY breaking models that has immediate, broad implications for model building. Our

result follows from the definition of tree-level SUSY breaking given in subsection 3.1.

It will be useful to work in the canonical basis of fields (2.11), which we repeat here

for convenience (with slightly modified notation):

W = fX +
1

2
(λ̃abX + m̃ab)ϕaϕb +

1

6
gabcϕaϕbϕc . (4.1)
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We ask, under what conditions is the pseudomoduli space spanned by X locally stable for

any X? By a unitary rotation of the fields, we can always bring λ̃ and m̃ to the form

λ̃ =

(
λ 0

0 0

)
, m̃ =

(
m 0

0 0

)
(4.2)

so that the reduced determinant det(λX + m) is nonvanishing for generic X. (If m̃

or λ̃ is non-degenerate, then λ̃ = λ and m̃ = m.) We will show that in fact, the reduced

determinant must be a constant function of X:

det(λX + m) = det m . (4.3)

As we will see, if (4.3) is not satisfied, then there are tachyons around the values of

X where the determinant vanishes. Keep in mind that (4.3) is only a necessary condition,

since there could be some light states as X → ∞ and one has to check them too in order to

ensure local stability. This can be done, but it will not be important for our purposes here.

To prove (4.3), we will use the lemma from section 2. Suppose (4.3) does not hold;

then since the determinant of λX + m must be a polynomial in X,

det(λX + m) =
∑

ci(λ,m)Xi , (4.4)

there must be places in the complex X plane where it vanishes. Consider the theory around

some such point X = X0, and let v satisfy

(λX0 + m)v = 0 . (4.5)

This corresponds to a massless fermion direction. The lemma that we proved in sec-

tion 2 implies that either the corresponding boson δϕi = vi must also be massless, or there

is a tachyon. But the former option implies, via (2.7) and (4.5), that λv = mv = 0, which

contradicts the assumption that det(λX +m) is not identically zero. Therefore, there must

be a tachyonic direction in field space around X = X0, but this contradicts our assump-

tion of local stability. We conclude that det(λX + m) cannot have any zeroes at finite

points in fields space; the only possibility is that it is a constant function. This proves the

desired result.

The result (4.3) has immediate consequences for models of gauge mediation where the

hidden sector is described by a generalized O’R model. In such models, some subset of

the ϕa fields are charged under the SM gauge group GSM = SU(3) × SU(2) × U(1) (with

X neutral) and function as messengers communicating SUSY-breaking to the MSSM. The

mass matrix of messengers must factorize at the quadratic order from the other fields due

to gauge invariance, so if the hidden sector breaks SUSY at tree-level, this results in

det(λX + m)
∣∣
messengers

= const . (4.6)

However, this immediately implies that the gaugino masses in the MSSM vanish to leading

order in the SUSY-breaking, since at this order they are given by [9, 40]:

meg ∼ f † ∂

∂X
log det(λX + m)

∣∣
messengers

= 0 . (4.7)
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Since there is no such cancellation for the sfermion masses, this generally implies

that the gauginos are much lighter than the sfermions in such models.6 This simple result

shows that it is impossible to build viable theories of gauge mediation with tree-level SUSY

breaking, unless one is prepared to accept an exacerbated little hierarchy problem and the

attendant fine tuning coming from very heavy sfermions.

Examples of models with generalized O’R hidden sectors and nonzero gaugino masses

include classic constructions such as minimal gauge mediation [42, 43]. Here the messenger

fields are “put in by hand” and couple to the SUSY-breaking X field only via a cubic

superpotential term δW = λXϕ̃2, so they always become tachyonic around X = 0. Other

examples include the direct gauge mediation models studied in [9], where the messengers

are required for SUSY-breaking, and where there are again always tachyons around X = 0

if gaugino masses are generated at leading order. Our result elucidates the basic mechanism

in these (and other) examples. The gaugino masses can be nonzero at leading order because

the pseudomoduli space is not locally stable everywhere.

Although our framework and discussions pertain to classical properties of renormal-

izable Wess-Zumino models, the main results of this section apply broadly to many mod-

els of gauge mediation with dynamical SUSY breaking. Calculable models of DSB, such

as [20–22], are often described at low energies by a renormalizable WZ model with a large

global symmetry group. Gauging a GSM subgroup, one obtains a model of “direct gauge

mediation” [44] which falls under our framework. It has been observed in many explicit ex-

amples [25–30] that even if R-symmetry is spontaneously broken, the leading order gaugino

masses vanish. The reason for this is obvious from our results: in the models in question,

the starting point was always the lowest-lying space of classical vacua. As such, our the-

orem implies that the model cannot generate leading-order gaugino masses at any point

on it, regardless of how the R-symmetry is broken.7 Thus, we see how a phenomenolog-

ical problem common to many direct mediation models can be understood as a general

symptom of tree-level SUSY breaking.

It is intriguing that, in this somewhat limited context, we have arrived at another

argument for the inevitability of metastability, which complements the more general argu-

ment presented in [4]. Moreover, our line of reasoning suggests the need for a new type of

metastability, not just due to non-perturbative effects as in [20], but also from states with

lower energy within the perturbative, renormalizable approximation.

Obviously, another way to avoid the obstruction to leading-order gaugino masses is to

consider hidden sectors which are not described at low-energies by generalized O’R models,

e.g. strongly-coupled models or models where non-renormalizable Kähler or superpotential

corrections are important. However, such models are often not calculable, limiting their

usefulness for making phenomenological predictions. Also, it is intriguing that when the

6One might hope that for large SUSY-breaking parameters (i.e. very low scale gauge mediation) the

hierarchy might disappear. However, it generally turns out that even when SUSY breaking is not small,

the spectrum has gauginos much lighter than scalars, due to the fact that the higher-order corrections to

the gaugino masses are usually not significant in such theories of messengers (see e.g. [41]).
7In fact, in [25] the authors were led to consider a state with higher energy by explicitly calculating the

leading contribution to gaugino masses and observing that it vanishes.
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model is calculable, the gaugino masses often vanish at leading order even though the

Kähler potential is non-canonical (see e.g. the recent example of [45]). Perhaps there is a

way to generalize our result to the case of non-canonical Kähler potential; the fact that

the leading order contribution to gaugino masses is a superpotential term in the effective

action might be useful for this.

It would be interesting to explore these directions further. Following the avenue out-

lined by these observations, one may hope to find a new class of theories that break SUSY

dynamically (in a metastable state) and successfully generate viable soft masses.
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A Collected results on O’Raifeartaigh models

A.1 Massless particles

As was mentioned in section 3.3, generalized O’R models which break R-symmetry at

tree-level possess a qualitative feature distinguishing them from other models in which

R-symmetry is broken by radiative corrections or theories with explicit breaking of R-

symmetry. It turns out that if the pseudomoduli space breaks R-symmetry there are nec-

essarily at least three real massless modes — two from the canonical pseudomodulus (2.9)

and one from the Goldstone boson of spontaneous R-symmetry breaking. This is to be

contrasted with theories where the origin is part of the pseudomoduli space (like the origi-

nal O’Raifeartaigh model); in these theories, the R-Goldstone mode is in general identical

to the phase of the complex pseudomodulus, so there are only two massless degrees of

freedom.

To prove our claim, we need to show that if an O’R model of the form (2.11) breaks

R-symmetry at tree-level in some vacuum φi 6= 0, then the canonical pseudomodulus and

the Goldstone boson of R-symmetry breaking

φi → eiθRiφi = φi + iθRiφi + O(θ2) (A.1)

are independent massless degrees of freedom. Note that this is a local statement about the

theory around the point φi; what we need is that to linear order around the vacuum, the

canonical pseudomodulus and the R-Goldstone boson are linearly independent.

We will prove this claim by contradiction — if the pseudomodulus and the R-Goldstone

boson are linearly dependent somewhere on the pseudomoduli space, then the pseudomoduli

space must contain the R-symmetric origin. Suppose that the two modes are linearly

dependent; then there must exist a z ∈ C
∗ such that

W ∗
i = zRiφi . (A.2)
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The condition for an extremum (2.3) implies that

RiφiWij = 0 (A.3)

which we recognize as the change in Wj under a U(1)R rotation:

d

dθ
Wj(e

iRiθφi)
∣∣∣
θ=0

= iRiφiWij = 0 . (A.4)

Therefore, all the F -terms are invariant under rotations by the R-symmetry. Since

Wi has definite R-charge 2 − Ri, the only nonzero F -terms must be those of fields with

R-charge R = 2. And according to (A.2), this means that the F -terms and vevs must

be proportional to one another with the same constant of proportionality. We conclude

that one can always reach the origin along the canonical pseudomoduli space, which is the

desired result.

A.2 Constant F -terms on pseudomoduli spaces

In this subsection, we will provide a heuristic argument for a claim made in section 2.2:

that F -term vevs are always constant on the entire pseudomoduli space. This includes not

only the canonical pseudomodulus (2.9), but also any other pseudomoduli that may be

present in the theory.

Suppose there is some pseudomodulus direction φ(x), with x a real parameter. Proving

that the F -terms are constant along this direction amounts to proving that

dWi

dx
= Wij

dφj

dx
= 0 (A.5)

for every x.

By definition, there cannot be any tadpoles along the pseudomoduli direction. This

amounts to
∂V

∂φi
= WijW

∗
j = 0 (A.6)

for every x. It follows then that

d

dx

(
∂V

∂φi

)
= WijW

∗
jk

dφ∗
k

dx
+ WijkW

∗
j

dφk

dx
= 0 (A.7)

We recognize here the action of boson mass-squared matrix (2.4),

(
M∗

FMF F∗

F MFM
∗
F

)(
dφi/dx

dφ∗
i /dx

)
= 0 (A.8)

Indeed, this is equivalent to saying that M2
B must have a zero eigenvector along the

entire pseudomoduli space x. Now how can this happen? It can arise in three ways:

1. By tuning parameters in the theory. We will ignore this case and only focus on

generic theories.
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2. By spontaneously breaking a global symmetry. Then the massless mode in question

is actually a Goldstone boson, not a genuine pseudomodulus. Here one can have

a cancellation between the two terms in (A.7), in which case the F -terms are not

necessarily constant, Wjk
dφk

dx 6= 0. However, it’s clear how they change as we change

x — they rotate by the action of the spontaneously broken symmetry. (One example

of this is the SO(N) O’Raifeartaigh model, W = hX~v · ~v + m~v · ~w + fX in the

symmetry breaking phase |hf | > |m2|. There ~Fw 6= 0 and rotates under the action

of the spontaneously broken SO(N) subject to |~Fw · ~Fw| = const.)

3. By imposing symmetries on the model that force various couplings to vanish, in such

a way that M2
B is degenerate for any choice of the remaining, symmetry-respecting

couplings. This can only happen if the vector dφi

dx appearing in (A.8) is annihilated by

both M2
F and F , i.e. if the two terms of (A.7) vanish individually. This immediately

implies the desired result (A.5).
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